
5 MISTAKES
TO AVOID ON
YOUR DRUPAL
WEBSITE

TABLE OF CONTENTS

3

4

5

6

8

10

11

12

Introduction

Architecture: Content

Architecture: Display

Architecture: Site or Functionality

Security

Performance

Infrastructure

Maintenance

22

Drupal is one of the most flexible content management systems in existence. This
ebook provides best practices in five crucial areas of building and maintaining an
effective Drupal site.

Acquia’s consulting staff has discerned patterns of mistakes as they have audited
numerous Drupal sites. In this ebook, you’ll benefit from lessons learned through those
Acquia site audits.

– Architecture: Best practices for structuring content, how to build the display, and
how to organize functionality.

– Security: How to avoid specific types of attacks, as well as Drupal best practices
that help protect a site.

– Performance: Tools for performance analysis, common approaches to optimizing
your site, and caching mistakes to avoid.

– Infrastructure: Best practices for your software stack, including Varnish and
Memcached layers.

– Maintenance: How to set up best practices throughout the life of your site,
including development, deployment, and maintenance phases.

This ebook assumes that you are familiar with Drupal site building and that you know
PHP, Drupal-specific programming, such as hooks, and the MySQL database.

LET’S GET STARTED

33

INTRODUCTION

ARCHITECTURE: CONTENT
Content is the essence of your website, the reason it exists. Determining the
structure of content is the first step in creating website architecture.

Best Practice
Plan your content structures, including fields and content types. Clear content architecture helps
ensure good performance, a better user experience, and easier maintenance. (You may find
overlap here with Display Architecture, because Views often depend on certain content types.)

Mistake: Too many content types.

Result: This will confuse content creators.

Example: Content types “news” and “article,” which are almost identical.

Solution: Reuse and standardize content types.

Mistake: New fields created for every content type.

Result: This is a waste of resources and drain on performance.

Example: Two different fields for school city and teacher city.

Solution: Reuse and standardize fields. Check your field report at
example.com/admin/reports/fields.

Mistake: Content types with no nodes.

Result: An unneeded content type adds unnecessary complexity.

Solution: Reassess your needs as you build the site. Filter your content list to identify
and delete unused content types.

Clear content

architecture helps

ensure good

performance,

a better user

experience,

and easier

maintenance.

44

ARCHITECTURE: DISPLAY
Drupal is a powerful tool for displaying content in different regions, formats, and
displays. Display architecture includes the Views, Panels, and Context modules.

Best Practice
The ease of changing the look and feel of your website is an indication of good display
architecture.

– Plan your display architecture to render content only when needed.
– Optimize and reuse as much as possible.
– Always separate logic and presentation.
– Start with a solid base theme and learn it thoroughly.

Mistake: A new View for every list.

Example: Three separate Views for jobs in London, Paris, and Lisbon.

Solution: Analyze any new View you create to determine if you can reuse a View you already
have, and use Contextual Filters to render lists based on specific parameters.

Mistake: PHP code or other logic in the database or in template (.tpl.php) files.

Example: PHP code that determines visibility of a scores block in a sports section.

Solution: Write all logic, including PHP, calls to web services, and SQL queries, in modules or
theme preprocess functions if necessary.

Recommended Tool
Theme Developer module: With this module enabled, you can mouse over different
areas of a webpage to see what template renders that section.

55

Ease of

changing the

look and feel of

your website is

an indication of

good display

architecture

ARCHITECTURE:
SITE OR FUNCTIONALITY

66

Site architecture includes how the site works, the number of
modules, and how they interact.

Best Practice
– Keep your site lean, using the minimal amount of code and fewest

number of modules necessary.
– Use contrib modules whenever possible rather than writing custom

code.
– Views is now in Drupal 8 Core and not a contrib module.
– Follow Drupal standards for custom code.
– Reevaluate your architecture periodically.

Mistake: Too many modules. More than 200 enabled modules indicates a
need for analysis to be sure all are necessary.

Example: Original plan included multiple languages, but site ended up in
English only. All multilingual modules and contributed modules are
installed and enabled.

Solution: Reevaluate your site periodically, and disable, uninstall, and
remove unused modules from the code base.

Mistake: Too many roles, which makes maintenance and security
checking difficult.

Example: Original plan anticipated need for numerous roles, but most not
used. Often roles attempt to match job

titles too closely.

Solution: Evaluate roles and permissions on your site. Group into
functional roles that can cascade and inherit permissions.

Mistake: Creating custom code when a contrib module already does the
job well.

Example: Custom module to create forms on the fly that can be sent by
email to site admins.

Solution: In this case, the well-tested Webform module provides this
functionality, along with flexibility for site admins.

Be sure no contrib module already does what you need.

Mistake: Hacked core or contrib modules. Behavior will be unpredictable.
Updating is difficult.

Solution: If core or contrib doesn’t do quite what you need, build a
custom module using hooks to alter behavior.If you inherit a site, use
Acquia Insight or the Hacked! module (see Recommended Tools).

The ULTIMATE GUIDE TO DRUPAL 8
provides an excellent end-to-end overview
of Drupal 8 from a site builder perspective.
Get all your burning questions answered.

777

Mistake: Custom code using the wrong hooks or using the Drupal API
incorrectly.

Example 1: Using hook_init, which loads on every page, for something
used only on the home page.

Example 2: Custom modules with hardcoded strings for nids, tids, and
vids. When these change in the future, troubleshooting the cause of
resulting problems is very difficult.

Solution: Plan carefully when using custom code. Find the right hooks and
syntax using drupal.org’s API documentation.

Recommended Tools
– Simplytest.me: On this site, simply enter the name of a Drupal module.

The site will spin up a Drupal instance for you to test the module for
30 minutes.

– Hacked! module: This module scans your Drupal installation, including
contrib modules and themes, and determines if they have been
changed. Used with the Diff module, result screens will tell you the
exact lines that have changed. Absolutely not to be used on
production sites.

– Acquia Insight: Our service does similar scans to the Hacked! module,
but provides additional site configuration and security checks as well.

GET THE EBOOK

DEEP DIVE

http://api.drupal.org/api/drupal
http://simplytest.me/
http://drupal.org/project/hacked
https://www.acquia.com/products-services/acquia-network/cloud-services/insight
https://www.acquia.com/resources/ebooks/ultimate-guide-drupal-8

SECURITY
Good security practices protect your site from hacker attacks. Drupal has good security
built in if used correctly.

Best Practice
Once you begin to configure your site you might introduce new security issues. Plan configuration so
that only trusted users have permissions that involve security risks.

– Keep core and contrib modules updated. You may not opt to do some module updates if the fixes
or improvements have no direct effect on your site, however you should always apply security
updates as soon as possible. Subscribe to security announcements on Drupal.org.

– Use strong passwords. Passwords are the most likely candidates for points of failure in your site
security.

– Use the Password Policy module to devise a set of constraints before your users set their
passwords.

– You can also set passwords to expire.
– Limit file uploads and what files are served. Limit the file types allowed and limit uploads to trusted

users only. Check your permissions for specific content types and files types allowed in field
uploads.

– Use the Security Review module and Acquia Insight. The Security Review module will analyze your
site configuration and report methods for fixing errors. Use this module only on a staging or test
site. Disable and remove the module on production sites. Our service, Acquia Insight, provides
additional site configuration and security checks as well.

88

Plan

configuration

so that only

trusted users

have

permissions

that involve

security risks.

https://drupal.org/project/password_policy
https://drupal.org/project/security_review
https://www.acquia.com/products-services/acquia-network/cloud-services/insight

Check out Acquia’s developer site for a wide selection of
podcasts, blogs, downloads and product information.

799

Guard Against Attacks in Custom Code
Following are three attacks to guard against in custom code:

Avoid SQL Injection

Mistake: Using SQL queries in code rather than
using Drupal API.

Example: The code: db_query(“select * from
table where id=$_GET[‘id’]”); allows for
the attack example.com/index.php?id=1
union select * from users;

Solution: Use Drupal’s database abstraction layer.

Avoid XSS—Cross-site Scripting

Mistake: Displaying visitor parameters without
checking them allows visitors to inject client-side
scripts into pages viewed by other users.

Example: The code: <?php echo “Your number
is “. $_GET[‘id’]; ?> allows the attack

Index.php?id=<script>alert(“UAAAT??”);
</script>

Solution: Clean (sanitize or filter) any input from
untrusted users before returning to the browser for
rendering.

Avoid CSRF—Cross-site Request
Forgery

Mistake: URLs containing wildcards (%) that are not
protected and form code entered directly into the
site. HTTP Post from forms can allow a request to
originate from anywhere, not just your site as you
expect.

Solution: Use Drupal’s Form API, which protects
against these attacks by inserting a token in every
form. If you render any sort of URL that should be
protected, make sure that you either ask for a
confirmation with the Form API or use token with the
URL verify that the token is present and valid on the
response handling.

DEV.ACQUIA.COM

http://api.drupal.org/api/drupal/includes%21database%21database.inc/group/database/7
http://drupalscout.com/knowledge-base/introduction-cross-site-request-forgery-csrf
https://dev.acquia.com/

1010

PERFORMANCE
Performance is crucial for providing a great user experience. If the site is slow or
balky, even great functionality won’t keep the site visitor engaged.

Best Practice
The first action for improving performance is analyzing what the website is doing. With the
answer to this question, optimize as much as possible, then implement caching.

Analyze—Tools:

– Devel for viewing database queries which run
on each page.

– XHProf is generally the best tool to start with.
Profiling is what helps you find the issues to
begin with. Read about Using XHProf with
Acquia Cloud.

– New Relic will analyze your site at a low level
and report slow database queries, external
queries, and specific pages. Read more
information about New Relic, which is part of
Acquia Network.

– Yottaa focuses on front-end performance. This
service will tell you how fast your site loads in
different locations around the world. More
information about Yottaa, which is part of Acquia
Network.

– Read more about tools for parsing a slow query
log.

Optimize—Common Problem Areas:

– Using complex queries that take too much time
and don’t use an index.

– Calling functions too often.
– Keeping unused modules enabled on your site.

Disable any unused modules.
– Misconfiguring cron. See more about

configuring cron.
– Using the default views pager, which requires an

additional COUNT query. Use Views Litepager,
which provides pagers without the COUNT
function.

– Using database logging (dblog). It is enabled by
default in Drupal 7, and errors can fill up your
database quickly. One common solution is to
use syslog instead, but this merely masks the
problem by making the logs less accessible. A
better solution is to fix all PHP notices and
warnings to reduce logging overhead.

– Use the Fast 404 module to serve static 404s
for image, icon, CSS, or other static files, rather
than bootstrapping Drupal.

– Not aggregating CSS and JavaScript files. See
how to turn CSS and JavaScript aggregation in
Drupal.

Caching—Common Mistakes:

– Having no cache strategy at all. Not taking the time to
understand how content can be cached (per user, per
group, per role, and so on) is the worst mistake.

– Clearing caches too often.
– Caching at too low a level, such as using views cache

instead of Blocks or Panels pane cache.
– Using basic caching, such as block caching or panels

pane caching.
– Using a caching strategy that is too complex for real

needs of site.

Recommended Tools

– Simple Tips to Improve Drupal Performance: No
Coding Required for more details about
performance tuning.

– When and how caching can save your Drupal
site, and When and how caching can save your
site part 2: authenticated users, Hernani Borges
de Freitas.

– Datasheet for Acquia’s Performance Audit.
– Practical performance tips in Acquia’s Library:

Improving website performance

http://www.yottaa.com/
http://www.php.net/manual/en/book.xhprof.php
https://docs.acquia.com/articles/using-xhprof-evaluate-code-performance
https://docs.acquia.com/articles/using-xhprof-evaluate-code-performance
https://newrelic.com/
https://www.acquia.com/products-services/enhance-drupal-performance-new-relic
https://www.acquia.com/products-services/enhance-drupal-performance-new-relic
https://www.acquia.com/products-services/enhance-drupal-performance-new-relic
https://www.acquia.com/products-services/enhance-drupal-performance-new-relic
https://docs.acquia.com/articles/tools-parsing-slow-query-log
https://docs.acquia.com/articles/tools-parsing-slow-query-log
https://docs.acquia.com/cloud/manage/cron
https://drupal.org/project/views_litepager
https://drupal.org/project/fast_404
https://docs.acquia.com/cloud/performance#css-js
https://docs.acquia.com/cloud/performance#css-js
https://www.acquia.com/resources/ebooks/improve-drupal-performance
https://www.acquia.com/blog/when-and-how-caching-can-save-your-drupal-site
https://www.acquia.com/blog/when-and-how-caching-can-save-your-drupal-site
https://www.acquia.com/blog/when-and-how-caching-can-save-your-site-part-2-authenticated-users
https://www.acquia.com/blog/when-and-how-caching-can-save-your-site-part-2-authenticated-users
https://www.acquia.com/products-services/professional-services/offerings
https://docs.acquia.com/cloud/performance

1111

INFRASTRUCTURE
Infrastructure covers the stack your website lives on, including the server, the database, and any software layers, such as Varnish or
Memcached, which ensure your visitors have a snappy experience. Planning the infrastructure from the start and developing on the
same environment can greatly reduce variables and risk at launch time. Having a reliable multiple environment configuration and a solid
disaster recovery plan shouldn’t be left to last-minute decisions. When it is, mistakes start arising. Here’s a few tips to avoid the most
common errors.

Best Practice
– Size your stack correctly, not too large, not too small. This can ensure you’re economically prepared for anything.
– Bottlenecks can arise from the hardware or from processes hogging memory. Check logs for errors and prepare for growth and spikes.

Your stack is only as fast as the slowest component. Focus your efforts there; you’ll probably find low hanging fruit.
– In terms of security, it’s crucial to configure to protect from internal attacks as well as external attacks.

Size Your Stack Properly

Mistake: Server’s hardware capacity is sufficient
but misconfigured.

Example: Database server set large enough,
with 48GB of memory, but InnoDb buffer pool
set for only 1GB.

Solution: Take into account all aspects of stack
configuration. Use tools such as mysqltuner.pl

(see Recommended Tools) to analyze your
database.

Let Varnish Take the Hit

Mistake: Misconfiguration causes traffic to bypass
Varnish and hit the server.

Solution: Check response headers to ensure that
pages you expect to be cached are indeed cached.
Ensure that modules aren’t setting session variables
unnecessarily.

Avoid Exposure to Vulnerabilities

Mistake: Remote connections to the database,
Memcached, or Solr are allowed.

Example: Assuming an external firewall will provide
adequate protection, the port that runs Memcached
is not protected via IP tables.

Solution: As many as 50 percent to 70 percent of attacks
can be internal. Forbid remote connections to the
database, Memcached or Solr, and maintain this
configuration through any infrastructure changes.

Recommended Tools

– Cmysqltuner.pl or MYSQLTuner: This is a Perl script that you can download from Github. It will present current configuration variables and status
data for your MySQL installation, along with some basic performance suggestions.

– Infrastructure workshops: are useful for operations teams new to Drupal or LAMP requirements. Especially if you’re building out your own
infrastructure, instead of going with a managed solution like our own hosting.

– Drupal Multi-site Infrastructure: has more specifics about the configuration of multi-sites.

http://mysqltuner.com/
https://github.com/rackerhacker/MySQLTuner-per
https://www.acquia.com/products-services/professional-services/offerings#infrastructure_workshop
https://www.acquia.com/blog/power-drupal-multi-site-part-1-code-management

1212

MAINTENANCE
The life cycle of a website begins from initial plans and extends to the end of the site. The site exists in three different phases:
development, deployment, and maintenance. After the site is launched, your website lifecycle practices become critical to the success of
changing and maintaining your site.

Best Practice
– Keep your code under version control.
– Maintain separate environments for the different stages of the site, and keep them up to date.
– Restrict access to the production site for all but the most trusted users.
– Review all logs periodically, including Apache, Drupal, and MySQL.
– Review and assess your architecture periodically, and plan for the future.

Maintain Reliable Collaboration
Through Version Control

Mistake: Not using a version control system (VCS).

Example: Copying code occasionally to backup
folders as a method of version control.

Solution: Use a version control system. Git is the
most popular among Drupal developers, but any
system is fine if used. Be sure you leave meaningful
commit messages so that colleagues can
understand the changes you have made.

Keep Organized

Mistake: Keeping extraneous files in the VCS
repository.

Example: Image asset files, holiday pictures,
or database dumps pushed to the repository.

Solution: Keep the VCS as clean and small
as possible.

Deploy with Version Control

Mistake: Uploading files to production through FTP.

Solution: Deployment must come directly from the
VCS repository.

Stay Secure During Deployment

Mistake: Production environment not properly
secured.

Example: Any developer can take a snapshot of
production to install on their laptop.

Solution: Allow developers to take snapshots and
have other access to development and staging
environments, but allow access to the production
environment only for the most trusted users.

Test on Environments as Similar to
Production as Possible

Mistake: Development and staging environments
out-of-date or missing functionality.

Example: Testing only in production because the other
environments have old data or no connection to an
external service.

Solution: Maintain testing environments as similar to
production as possible. With these, you can easily copy
from production and execute tests to ensure that changes
will work when moved to production.

Keep Your Site Up to Date

Mistake: Sites using out-of-date code for core
and contrib modules.

Solution: Keep all modules and core as current
as possible.

Recommended Tools

– Cmysqltuner.pl or MYSQLTuner: This is a Perl script that you can download from Github. It will present current configuration variables and status data for your
MySQL installation, along with some basic performance suggestions.

– Infrastructure workshops: are useful for operations teams new to Drupal or LAMP requirements. Especially
– if you’re building out your own infrastructure, instead of going with a managed solution like our own hosting.
– Drupal Multi-site Infrastructure: has more specifics about the configuration of multi-sites.

http://mysqltuner.com/
https://github.com/rackerhacker/MySQLTuner-per
https://www.acquia.com/products-services/professional-services/offerings#infrastructure_workshop
https://www.acquia.com/blog/power-drupal-multi-site-part-1-code-management

To learn more about Acquia’s Drupal 8 expertise, visit dev.acquia.com.

Interested in working with Acquia? Contact us at sales@acquia.com

Thanks for reading our walk-through of the top 5 pitfalls to
avoid with Drupal 8. Hope you found the guide valuable.

IT’S A WRAP

13

https://dev.acquia.com

OTHER US LOCATIONS

Austin, Texas

New York

Portland, Oregon

San Francisco

Washington, D.C.

INTERNATIONAL LOCATIONS

Brisbane, Australia

München, Germany

New Delhi

Paris

Reading, U.K.
P: +44 1865 520 010

Sydney
P: +61.2.8015.2576

Toronto
P: 647-953-4270

HEADQUARTERS

Boston, MA
53 State Street, 10th Floor, Boston, MA 02109
P: 888-922-7842

1414

