
HEADLESS AND
HYBRID DRUPAL 101

How to determine which CMS approach will work best
for your organization

TABLE OF CONTENTS
03
INTRODUCTION

07
HOW A UNIFIED
ARCHITECTURE
WORKS

09
HOW A DECOUPLED
ARCHITECTURE
WORKS

11
THE DIFFERENCE
BETWEEN HEADLESS
AND DECOUPLED

13
OPTIONS FOR BACK-END
WEB SERVICES

16
OPTIONS FOR
FRONT-END SDKS

19
GO BEYOND
API-ONLY

22
THE ONE QUESTION
THAT REVEALS THE
RIGHT APPROACH

27
FLEXIBILITY
FROM A HYBRID
ARCHITECTURE

30
THE BENEFITS
OF PROGRESSIVE
DECOUPLING

33
DRUPAL LETS YOU
CHOOSE THE RIGHT
APPROACH FOR EACH
PROJECT

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

2

INTRODUCTION
In the web development world, few trends have
spread more rapidly than headless content
management systems (CMS) and decoupled
applications.

Clearly, it’s an evolution beyond the traditional
approach, where the presentation layer was
tightly coupled within the CMS on the back end.
But having more options also drives a need to
better understand how each works so you can
choose the approach that best aligns with your
goals.

In this e-book, we explain how a decoupled
architecture works, when you should consider
decoupling, and how both marketers and
developers can leverage headless Drupal to
deliver ambitious digital experiences. We’ll also
cover how Drupal can provide advanced “hybrid
headless” capabilities that are difficult to find in
other systems.

3

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

Let’s begin by clarifying how “unified” and
“decoupled” architectures differ.

In a traditional or unified
architecture, both front-end and
back-end responsibilities are
contained within a single system.

This allows the CMS to not only
manage content, but also render
the markup (HTML) for the front-
end experience using templates
or low-code tools. This packaging
of tools provides a single, unified
system suitable for a wide variety
of websites and applications
without requiring additional
complexity.

With a decoupled architecture, the
Drupal back end provides an API
service layer for serving structured
content. Here, rather than use the
Twig templating engine that comes
out-of-the-box, a developer would
leverage another technology to
render the front-end experience.
When you think of the growing
number of devices that allow users
to gather and interact with content
(through “the glass”) this makes a
lot of sense.

UNIFIED ARCHITECTURE

DECOUPLED ARCHITECTURE

BACK END
PHP

FRONT END
HTML/CSS/JS

Drupal

BACK END
PHP

FRONT END
HTML/CSS/JS

API

Headless Drupal App

4

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

 Native applications are developed
for one specific device or platform,
such as desktop or mobile. For
example, mobile applications are
often developed for particular
smartphones or smartwatches.

 JavaScript applications update
pages dynamically through
asynchronous requests back to
the server and eschew full page
refreshes. This means that web
applications can call the server
without the browser needing to
reload the page.

 Digital signs are common ways
of displaying information in public
spaces, restaurants, offices, or other
locations. Typically, these are digital
displays that can request content
and images to display from an
external API, allowing those signs
to easily be updated and managed
remotely.

 Internet of Things (IoT)
applications, which include devices
like smart TVs, the Amazon Echo,
Apple Watch, or connected fitness
trackers. This space is rapidly
expanding, and these devices often
rely on external services for content
and data.

In this model, Drupal is considered a headless CMS
repository, which exposes content and data for
consumption by other applications. These applications
could include:

5

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

Organizations may select a headless Drupal approach
for a few reasons. Some implement a headless strategy
to leverage Drupal as a content repository to serve
content to any device in a complex digital ecosystem.
Others favor decoupling to allow front-end teams to use
popular JavaScript (JS) frameworks while maintaining
the back-end capabilities of Drupal. For example, many
organizations leverage headless Drupal in combination
with JavaScript frameworks, such as React, Svelte,
NextJS, or VueJS.

One important consideration to factor here is that no
matter what’s driving the decision to go with a headless
CMS, it pays to make sure both web developers and
marketers get what they need from it.

WHY COMPANIES MIGHT GO WITH
A HEADLESS APPROACH

6

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

HOW A UNIFIED
ARCHITECTURE
WORKS

7

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

Most interactions that take place on the web
rely on a request/response paradigm where
a user requests data and a system responds
by gathering, formatting, and rendering the
appropriate content within a predefined HTML
template.

This is the traditional way the internet works: the
browser makes a request for HTML, the server
returns the data, and then the browser renders
the page to the user. Very simple, very scalable,
and truly foundational to how the web works.

In a unified model, Drupal provides the back-
end content management system and an
HTML rendering engine (Twig) in a composable
framework. While some traditional CMS
systems provide similar results, the difference
with Drupal is that it is API-first and based on
discrete, composable systems. This provides
the opportunity to use it in either a unified or
a decoupled architecture depending on your
needs.

UNIFIED MODEL

BACK END
PHP

FRONT END
HTML/CSS/JS

BROWSER

url: https://site.com/articles
Method: GET

request

response

HTML
<html><body>
 <article><h1><p>...</article>
 <article><h1><p>...</article>
</body></html>

8

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

HOW A DECOUPLED
ARCHITECTURE
WORKS

9

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

A decoupled architecture takes the same basic
approach, but with a slight difference. Instead of all
of this taking place within a single, unified system,
it distributes these responsibilities among multiple
systems.

In a decoupled architecture, the Drupal back end
acts as the content repository. In this scenario, the
headless Drupal repository and the decoupled
application exchange data through standard HTTP
methods. The application makes a request and
passes parameters to the API. Then the headless
Drupal CMS returns the response, which is typically
in JSON format.

Drupal is API-first, and the RESTful Web Services
module is included in Drupal core (the standard base
package that defines the latest release of Drupal).
The module provides a customizable, extensible
RESTful API of data managed by Drupal. An HTTP
response can be served in JSON, XML, or other
representations.

In this figure, the REST API and HTTP client act
as the mediators in the decoupled architecture,
allowing both back-end and front-end developers
to work with their preferred frameworks. Drupal
provides basic REST APIs and a fully functional
JSON:API format in core, with GraphQL and other
formats available in the ecosystem.

DECOUPLED MODEL

url: https://site.com/api/articles
Method: GET

request

response

JSON
{“id” : 23, “title” : “Article 1”, “body”: … },
{“id” : 46, “title” : “Article 2”, “body”: … },
{“id” : 59, “title” : “Article 3”, “body”: … },

BACK END
PHP

API FRONT END
HTML/CSS/JS

10

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

THE DIFFERENCE
BETWEEN HEADLESS
AND DECOUPLED

11

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

In this guide, we have chosen to use
the terms headless and decoupled
very specifically. The distinctions
between headless and decoupled
can be pretty nuanced and difficult
to define.

A good rule of thumb is this:
“headless” typically refers to the CMS
or the service providing data via the
API, and “decoupled” typically refers
to the architecture or the front-end
application itself.

Simply put, a headless CMS does not
provide any display to the end user,
and only provides the API to make
content and data available. This allows
any front-end experience to use the
content. Drupal is a powerful and
popular choice for a headless CMS
because it is API-first (not API-only).
This means that it was specifically
designed with an API services layer at
its core.

A decoupled architecture typically
refers to some type of application that
provides the front-end experience,
along with one or more API services
to provide the content and data.
So, we would typically include the
user interface in the decoupled
architecture, whether that is a JS
application, mobile app, smart TV,
digital signage, or something else.

 Power a multitude of devices: With its flexible
APIs and web services, Drupal can be the
brain behind all of your systems to deliver
content everywhere.

 Leverage other front-end technologies:
Drupal can function as a services layer to
allow content created in the Drupal CMS to be
presented through a JavaScript framework,
such as React, VueJS, and Angular.

 Control all aspects of your media: Headless
Drupal can serve as a central repository to
send video and data to the many outlets
available in the current media marketplace.

 Integrate with multiple systems:
Organizations can introduce Drupal to the
back end in order to support existing technical
systems.

A HEADLESS DRUPAL
ARCHITECTURE ALLOWS WEB
DEVELOPMENT TEAMS TO:

12

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

OPTIONS FOR
BACK-END WEB
SERVICES

13

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

Today, Drupal offers a range of web services modules,
which enable anyone to consume data from Drupal
with ease. These include community modules in
addition to modules that are now available in core.

 Core RESTful Web Services: Drupal offers a REST
API out of the box. This includes operations to
create, read, update, and delete (CRUD) content
entities and to read configuration entities. There
are also four primary REST modules in core,
including Serialization, RESTful Web Services,
HAL, and Basic Auth. Core REST requires limited
configuration while providing a wide range of
features.

 Core JSON:API: JSON:API is increasing in
popularity due to its adoption by developers as a
common format and its robust support for complex
data. JSON:API is a specification for REST APIs
using the JSON format and offers functionality
beyond the core services layer.

14

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

https://www.drupal.org/docs/8/core/modules/serialization
https://www.drupal.org/docs/8/core/modules/rest/overview
https://www.drupal.org/docs/8/core/modules/hal/overview
https://www.drupal.org/docs/8/core/modules/basic_auth/overview
https://www.drupal.org/docs/core-modules-and-themes/core-modules/jsonapi-module

 GraphQL: Originally developed
by Facebook, GraphQL is a
query language developed for
client-tailored queries. GraphQL
enables clients of headless
Drupal to easily pull data from
the back end, allowing them
to retrieve custom sets of data
through a single request. Drupal
supports the GraphQL module.

 Low-Code Query Builder:
Drupal provides a core module
called Views that provides a UI
to build components that fetch
content from the database of
your site and present it to the
user. This dynamic query builder
can provide REST endpoints
that are completely managed in
the UI. This is a powerful way
to create and manage custom
endpoints without writing code.

 Custom Code: The service
layer in Drupal is designed to be
pluggable and composable from
the start. This means that even
if you have some very unique
or even proprietary service
integrations to provide, you can
build what you need on top of
Drupal.

This customization is going to
be much faster, easier, and more
stable than almost any other
bespoke approach because you
can simply extend the CMS to
provide what you need instead
of starting from scratch.

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

15

https://www.drupal.org/project/graphql
https://www.drupal.org/docs/8/core/modules/views

OPTIONS FOR
FRONT-END SDKS

16

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

In addition to a robust collection
of web services, Drupal now
offers an ecosystem of software
development kits (SDKs),
which help to accelerate the
development of applications in
other technologies. SDKs can help
to extend Drupal’s reach outside
of PHP.

Previously, consuming Drupal
content required some
understanding of the REST API
implementation details and
custom application development.
As a truly composable CMS, the
Drupal community has continued
to provide support for popular
frameworks and application
development platforms.

This means that you can get a
working application on day one
with a multitude of options:

 Drupal State offers a common
set of utilities that allow
JavaScript developers with
limited knowledge of Drupal
or the JSON:API spec to take
advantage of the best features
of Drupal’s API.

Being framework-agnostic,
Drupal State can be used
with vanilla JavaScript or any
other common JavaScript
frameworks. Drupal State aims
to be modular, extensible and
overridable, helping support the
Drupal JavaScript ecosystem.

17

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

https://project.pages.drupalcode.org/drupal_state/en/introduction/

 Next.js for Drupal, or Next-Drupal,
provides a path to replace your
Drupal front end with Next.js
while retaining key Drupal editing
features — the best of both worlds.
This includes the ability to instantly
preview the Next.js site within
the Drupal editorial workflow, to
create custom content architecture
without the hassle of complex
modules and clunky Twig
templates, and to support Multisite
and Multiple Views.

 Gatsby, a static-site generator
built with React and GraphQL,
alleviates the pain points around
scalability and performance
associated with building React
applications. On the back end,
by leveraging Drupal’s content
modeling, creation and editing
tools along with the JSON:API
module to serve content to

the Gatsby front end, you get
a powerful, full-featured, open
source, and free alternative to
expensive enterprise content
management systems.

 Druxt.js is an open source
bridge between two frameworks,
NuxtJS and Drupal, with the ability
to leverage Drupal’s own Entity/
Field display system, Block regions,
Views and more. DruxtJS supports
the Drupal JSON:API client with Vuex
caching and acts like a Vue.js theme
layer for Drupal. Druxt components
can be themed using Wrapper
components alongside Vue.js slots,
$attrs, and props.

18

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

https://next-drupal.org/
https://www.gatsbyjs.com/guides/drupal/
https://druxtjs.org/

GO BEYOND
API-ONLY

19

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

Today, common headless CMS
platforms take an API-only approach.
Utilizing the decoupled architecture,
organizations simply get an API and a
back end to input data into the CMS.
The required front-end experience is
missing.

The code they would need to build
a complete experience, whether a
website, an app, or other omnichannel
experiences, must be created. This is
why the decoupled architecture is often
referred to as “high code;” It relies on
developers to write and maintain code
for the front-end experience. A unified
architecture is often termed “low code”
because it provides UI tools for non-
developers to assemble the experience.

For some applications, the high-code
approach is acceptable and even
desired. There are specific times when
the experience and the code should be
tied together, like when you are building
a mobile, web, or IoT application.

When the developer owns the
experience, this is often the most
efficient way for them to build and
maintain the front end.

However, this is a severe limitation
when you have different needs, like
low-code tools to empower business
users. In this model, any kind of
custom layout requires a developer
to implement, which typically slows
down the time to market. To make
matters worse, API-only headless CMS
platforms tend to push organizations

into more expensive tiers by placing
limits on your site architecture and
governance.

For instance, you could be constrained
by the number of content types and
fields, the number of users, or even
the ability to have custom roles and
permissions. As your usage of their
platforms matures, it can get more
expensive.

Alternatively, Drupal utilizes an API-first
approach where an API is always available,
but is not required.

20

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

There are no limits on the number
of content types, complexity of data,
number of integrations, number of
users, or even advanced options for
roles and users.
Drupal provides all the functionality of a headless CMS
platform without the limits. It also allows organizations
the ability to choose which architecture is right for each
project.

When necessary, the unified architecture takes it a step
further by giving organizations the tools, templates
and other rendering options needed to build out a
site, without limitations. This is a massive advantage
because when you choose Drupal, you get the best
of all worlds. You get the ability to use the unified
or decoupled architecture on the same platform as
needed — and sometimes at the same time. This is
the hybrid CMS approach, which provides the greatest
degree of freedom and flexibility.

21

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

THE ONE QUESTION
THAT REVEALS THE
RIGHT APPROACH

22

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

There is a lot of hype around decoupled
architectures, so before embarking on a
project, it is important to make a balanced
analysis. If you choose to use Drupal as
the content repository to serve multiple
applications, a decoupled architecture could
be right for you. Primarily, you can determine
this by asking one simple question: Who
owns the experience assembly?

DEVELOPER OWNERSHIP
= HIGH-CODE ASSEMBLY
If the experience is code-driven and owned
by the IT team (developers), then a high-code
approach using the decoupled architecture
might be best. This provides a more limited
tool set for the business user to streamline
content creation, while the developer has
the greatest power to build the experience,
templates, and code to display that content.
The experience and the code are managed
and deployed together.

 Separation of concerns
Utilizing Drupal strictly as a content repository can enforce a separation of
concerns. With a fully decoupled architecture, the handling of content is confined
to the back end. This is separated from the front end, which only addresses the
presentation and delivery of that content to the end user.

 Pipelined development
This separation also extends to both back-end and front-end teams and allows
developers to work at their own independent development velocities. Front-end
developers are free to control markup and rendering, while back-end developers
can focus their efforts on developing a robust API.

 Streamlined content management
Moving experience management responsibilities to the development team frees
up business users to focus on structured content alone. With fewer responsibilities
required for content creation and management, the CMS can be streamlined to
provide a simpler and sometimes faster workflow for creating content. When the
content is highly standardized, this efficiency can be a huge asset.

THERE ARE SEVERAL ADVANTAGES ASSOCIATED
WITH A FULLY DECOUPLED ARCHITECTURE:

23

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

 No cross-site scripting
protection or input sanitization
(especially when not using a
framework)

 No layout and display
management for business users

 No previewable content
workflow

 No off-the-shelf modules or
integrations affecting the
front end

 No system notifications, errors,
or messages

 No BigPipe progressive loading
or advanced caching strategies

 No OOTB accessible markup or
user experience benefits

 No OOTB multilingual
management and language
switching

However, when the entire front end is controlled
by a decoupled application, technical teams
cannot take advantage of the Drupal capabilities
many users value.

This strategy of fully decoupling negates Drupal capabilities like in-place
editing and display management. It also introduces additional points of
failure and the risk of increased technical debt.

Other risks include:

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

24

MARKETER OWNERSHIP =
LOW-CODE ASSEMBLY
On the other hand, if the experience is content-
driven and owned by the marketing team (non-
developers), then a low-code approach using
the unified architecture should work best.
This provides self-service tools to empower
the business user to control the presentation,
while allowing the developer team to build
features, decouple components, and work in
parallel tracks. The experience and the code are
managed separately.

There are many advantages associated with a
unified architecture with Drupal:

 Low-code tools
One of the most powerful and noticeable
advantages is the ability for non-developers
to control the assembly and creation of
content using low-code tools. This means that
they can use the drag-and-drop UI to “build”
content and adapt it to meet their specific
needs. Instead of requiring a developer to
build templates, the business user can directly
create the experience they need as quickly as
possible.

 Experience preview and workflow
With low-code tools, the content creator
has the ability to visually build the pages
and experiences they need. This immediate
feedback increases velocity and enables
them to get their work ready for publication in
hours instead of days. The workflow tools also
mean that content approval processes can not
only enforce governance, but also give the
approvers the same preview options.

 Ambitious digital experiences
In addition to assembling beautiful static
content, low-code tools also enable creators
to assemble dynamic and advanced
components. These components, provided
by developers, are often the same pieces
of a fully decoupled application broken into
reusable, “bite-sized” pieces. This enables
non-developers to create compelling, modern
experiences that are functionally similar to a
fully decoupled application.

These advantages are why Drupal is such a
well-loved CMS by many marketing teams.
However, with power comes responsibility. When
adopting a low-code approach, more thought
and effort needs to be devoted to governance
and management of the content creation process
itself. The ease with which the system can be
extended and modified can make it too easy to
grow.

It can become a challenge to manage the more
complex configuration options and keep the
CMS from growing into more of a sprawling and
inefficient system. It often requires discipline
and strong technical guidance to find the
balance between growth and more limited
standardization.

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

25

There are advantages and
disadvantages to both approaches,
and there is no “right” way to go.
This is why it’s important to establish
who will own experience assembly,
how changes are delivered, if the
experience needs to be separate from
code deployments, and the needs of
the project in question.

In any event, Drupal provides the best
CMS choice for your organization
because it can be used for any
architecture, as opposed to API-only
tools. In fact, you can actually serve
multiple applications with different
needs from a single codebase
because Drupal natively supports
multisite management and is a
composable platform.

Each application can simply enable
the specific modules and features they
need from the common codebase.

Organizations benefit from having a
standard tool that can be reconfigured
in multiple ways. It ensures that
you are never “stuck” with your
architecture, and that you can reuse
the same tools in different ways to
solve the business problems of today
and tomorrow. This is why Drupal is
often called “future-ready” — because
it is designed to be able to evolve as
the industry changes.

BOTH APPROACHES
ARE VALID

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

26

GAIN EVEN MORE
FLEXIBILITY
THROUGH A HYBRID
ARCHITECTURE

27

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

Thus far, we have been primarily
focused on unified versus decoupled
architectures. Retaining a unified CMS
architecture is a perfectly valid option
for many sites and apps. However, if
you suspect that your needs go beyond
Drupal’s typical offerings, you could
select either a fully headless or hybrid
strategy. In fact, many people think
that this is a binary choice: it’s either
unified or not. However, there is a third
option that has grown increasingly
popular among Drupal users: hybrid
architectures.

A core risk of a fully decoupled
application is that you have to recreate
and manage many capabilities and
features that Drupal provides in a
unified model. This can translate into
higher costs, longer development
cycles, and reduced support for non-
developer users. This is why many
organizations are now looking to
leverage Drupal as a true hybrid CMS.

HYBRID ARCHITECTURE

BACK END
PHP

FRONT END
HTML/CSS/JS

APIFRONT END
HTML/CSS/JSBROWSER

Main Website Hybrid Headless Drupal Application or
Component

28

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

When using Drupal in a hybrid
architecture, you are able to combine
the benefits of a unified system
with the advantages of a headless
CMS. This is because Drupal is API-
first. That is, the API services layer is
available in Drupal core along with all
of the presentation tools. This hybrid
approach is often the ideal option for
modern organizations that need to
balance the needs of the marketing
team to own the experience with
the developer team being asked to
implement advanced features.

Once we get into hybrid architectures,
things can get more complicated
because we realize that it is no longer
a binary choice, but a spectrum
of options and opportunities. This
flexibility is one of the things that
developers love most about Drupal.

 1. Embedded decoupled components
Using Drupal as a low-code assembly tool,
non-developers can create content and
put different components together to build
the experience, which is then rendered as
sent to the browser. Drupal also supports
the ability to add a library of decoupled
components for assembly with the other
CMS assets.

These can be native web components
or any other JS framework supported
component. These components can provide
advanced interaction options, or even be
mini applications themselves, interacting
with any web-based services like a full JS
application. In fact, these components can
also use Drupal’s API layer to interact with
the system as a headless CMS, or tie into
external systems, such as an e-commerce
checkout.

 2. Satellite decoupled applications
The other major approach we see is to allow
Drupal to operate in a unified architecture
for the main site, but then offer the content
via API for consumption by “satellite”
applications. These can be any of the
decoupled applications we have discussed
above: JS frameworks, mobile apps, smart
TVs, and other IoT applications.

This flexibility is why a hybrid architecture is
touted by developers and industry analysts
alike. It provides the adaptability promised
by headless services with the tools and
support of a unified application.

WE TYPICALLY SEE TWO PRIMARY APPROACHES TO
IMPLEMENTING A HYBRID ARCHITECTURE:

29

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

https://www.gartner.com/en/documents/3970519/hybrid-headless-content-as-a-service-is-the-future-of-di

CONSIDER THE
BENEFITS OF
PROGRESSIVE
DECOUPLING

30

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

An increasingly popular solution to mitigate
the risks of fully decoupling Drupal is a
progressive decoupling strategy. Unlike
a fully decoupled architecture, hybrid
implementations insert a JavaScript
framework into a Drupal site’s front end
as decoupled components. JavaScript
frameworks continue to consume the REST
API; however, certain areas of content can
be controlled and rendered by Drupal while
others can still take advantage of client-side
rendering.

This hybrid approach enables the front-end
experience of JavaScript while editorial and
technical teams can both continue to take
advantage of valuable Drupal capabilities.
These decoupled components can be
created and implemented as needed in a
progressive way. So, parts of the site can
be decoupled without needing to commit
to either a unified or fully decoupled
architecture.

This also means that business users can
use the low-code tools to assemble and
rearrange the components without needing
developer resources.

A PROGRESSIVE
DECOUPLING STRATEGY
ENABLES YOUR
ORGANIZATION TO
MANAGE SPECIFIC
PAGE ELEMENTS IN
DIFFERENT WAYS.

Here, the decoupled components
in pink can be managed per page
as needed. The application can
selectively choose how much of any
particular page to decouple based on
the needs of the experience.

31

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

The Georgia Technology
Authority is the digital services
agency that services the state of
Georgia. With Acquia’s help, the
GTA team devised a strategy to
migrate, rebuild, and redesign
the state of Georgia’s outdated
CMS, and transform it into a
single cohesive system.

They built a multisite
architecture that promotes
consistency and flexibility across
all agency sites on Acquia Cloud
Platform. With this strategy, they
were able to migrate content
efficiently, while creating a
custom responsive, mobile-first
search application.

WIthin 12 months, Georgia.gov
launched 55 sites on the Acquia
Platform, and officials estimate
that the move to Drupal and the
Acquia Platform will generate
savings of $4.7 million over
five years. This move allowed
Georgia.gov to free itself from
managing at least 20 servers,
and provided a standardized
approach for managing all of their
web properties more efficiently.

Since site launch, Georgia.gov
has continued to partner with
Acquia to move government
agencies “beyond the browser”
by leveraging the hybrid CMS
approach.

Over the course of a three-
month project, Acquia built an
Alexa skill that anyone with an
Amazon Echo device can take
advantage of, whether it’s to
know everything about food
stamps in Georgia or to perform
simple inquiries like transferring
an out-of-state license, acquiring
an early election ballot, or
registering for a fishing license.

The content for these questions
is provided by the Georgia
websites via the API. This
information can be updated in
a single place, and everywhere
that uses that data is instantly
updated as well.

GEORGIA TECHNOLOGY AUTHORITY
CASE STUDY

32

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

https://www.acquia.com/resources/case-studies/state-georgia
https://www.acquia.com/resources/case-studies/state-georgia
https://www.acquia.com/blog/alexa-ask-georgiagov/15/05/2017/3303821
https://www.acquia.com/blog/alexa-ask-georgiagov/15/05/2017/3303821

DRUPAL LETS YOU
CHOOSE THE RIGHT
APPROACH FOR
EACH PROJECT

SUMMARY AND TAKEAWAYS

33

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

In an environment where brands must
deliver a streamlined, optimized, and
rewarding digital experience for their
audience through whichever “glass”
users choose to interact with content, it’s
important to leverage a CMS approach
that works well for both marketers and
web developers.

Using a headless Drupal architecture,
where the back end is decoupled from
the presentation layer, can certainly give
web development teams the control and
flexibility they need to deliver creative
solutions for audiences across many
channels and devices.

But if, as many organizations are finding,
this approach either increases the
number of technical issues or restricts
marketers from implementing content
and campaigns the way they want to, the
headless CMS route may not be ideal.

Thankfully, there is another approach
growing increasingly popular among
both kinds of teams.

Hybrid headless Drupal enables you to
combine the benefits of a unified system
with the advantages of a headless CMS.
Getting that balance right will make it
easier to build, manage, and optimize
your content and data so you can deliver
exceptional digital experiences through
a variety of devices. Even if you don’t
get the balance quite right at first, a
hybrid CMS allows you to calibrate your
approach until it’s optimized.

Adopting hybrid headless Drupal enables
web development teams to:

 Work in an independent, yet
collaborative, manner

 Streamline content management
 Expedite production timelines
 Deliver vital information through
a growing number of different
interfaces

 Adapt to future technology quickly
 Optimize digital experiences

For development teams looking to
deploy Drupal as a headless CMS,
Acquia provides a full platform of tools
and capabilities to support every stage
of the developer and marketer workflow.
Founded by the same open source
pioneer who founded Drupal, Acquia
is an open digital experience company
that enables ambitious brands to
embrace innovation and create customer
moments that matter.

H
E

A
D

LE
S

S
 A

N
D

 H
Y

B
R

ID
 D

R
U

PA
L 10

1

34

WANT TO LEARN
MORE ABOUT HOW
A HEADLESS OR
HYBRID DRUPAL
CMS CAN DELIVER
GREATER FLEXIBILITY
FOR YOUR TEAMS?

REQUEST A DEMO

35

https://www.acquia.com/about-us/contact/request-a-demo

ACQUIA.COM

ABOUT ACQUIA
Acquia empowers the world’s most ambitious brands
to create digital customer experiences that matter.
With open source Drupal at its core, the Acquia
Digital Experience Platform (DXP) enables marketers,
developers and IT operations teams at thousands of
global organizations to rapidly compose and deploy
digital products and services that engage customers,
enhance conversions and help businesses stand out.

	Button 2:
	Page 2:
	Page 15:
	Page 24:
	Page 25:
	Page 26:
	Page 34:

	Button 3:
	Page 2:
	Page 15:
	Page 24:
	Page 25:
	Page 26:
	Page 34:

	Button 6:
	Page 3:
	Page 4:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 13:
	Page 16:
	Page 19:
	Page 22:
	Page 27:
	Page 28:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 35:

	Button 7:
	Page 3:
	Page 4:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 13:
	Page 16:
	Page 19:
	Page 22:
	Page 27:
	Page 28:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 35:

	Button 10:
	Page 5:
	Page 12:
	Page 18:
	Page 20:
	Page 23:
	Page 29:

	Button 11:
	Page 5:
	Page 12:
	Page 18:
	Page 20:
	Page 23:
	Page 29:
	Page 36:

	Button 14:
	Page 6:
	Page 14:
	Page 17:
	Page 21:

	Button 15:
	Page 6:
	Page 14:
	Page 17:
	Page 21:

	Button 16:

